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Weak-Coupling Limit for Scattering by Strongly Singular Potentials* 
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The validity of certain cutoff procedures, which have lately been employed in the treatment of termwise 
divergent perturbative expansions in nonrenormalizeable field theories, is investigated in the context of 
nonrelativistic scattering from strongly singular repulsive potentials. For the cases considered the heuristic 
cutoff prescription indeed yields the correct expression for the weak-coupling limit of the phase shift. 

I, INTRODUCTION 

HEURISTIC computational schemes for extracting 
meaningful results in the framework of non­

renormalizeable field-theoretic models have come under 
considerable discussion recently.1,2 Although the per­
turbative expansions represented by sets of Feynman 
graphs are termwise divergent, one supposes that this 
is only an artifact introduced by an improper expansion 
in powers of a coupling constant g, and that an appro­
priate representation of the sum must exist in which 
divergences do not appear. To achieve such a represen­
tation, one introduces a cutoff parameter, A say, in the 
Feynman integrals, rendering them termwise con­
vergent. The supposition is that the sum over graphs is 
itself finite as A —><*> and that in this limit it represents 
the physical answer. In practice, the summation cannot 
be fully carried out in closed form. Often, however, one 
is content to find the leading term in an asymptotic 
expansion for small values of the coupling constant g. 
Here the further supposition is then made that the 
leading term can be obtained by summing the leading 
contributions (as A—» oo) for each order of g. Even this 
sum over leading terms cannot in general be carried out 
in closed form; hence, one cannot in general confirm that 
it indeed leads to a finite result as A —> °o. But on the 
assumption that the sum does in fact exist, a power 
counting analysis then yields information about the 
nature of the leading term in an asymptotic expansion 
for small values of g. 

Since, as said, the legitimacy of these procedures 
cannot be easily investigated in a field-theoretic context, 
we propose in this note to study similar improper 
perturbative expansions arising in nonrelativistic po­
tential scattering theory. 

II. CUTOFF PROCEDURE FOR SINGULAR 
POTENTIALS 

In this section we describe how the cutoff procedure 
would be used in connection with the study of scattering 
by a strongly singular repulsive potential. Consider the 
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radial Schrodinger equation for the /th partial wave 

d2<p f 1(1+1) 

dr2 (1) 

The integral equation for the regular solution of (1) is 

<p(kyr)=sl(kr)~-gsl(kr) / d^V^vik^dr' 
k 

-gci(kr) sl{kr')V(r')<p(k/)dr\ (2) 
k Jo 

where 
sl(kr)=(±7rkry'Ul+h{kr), 

Ci(kr)=-QTkry'*Yl+h(kr). 

The phase shift for the lib. partial wave is determined by 

tan«5z= - (g/k) / si(kr) V(r)<p(k,r)dr. (3) 

Now we shall always suppose that r V —* 0 as r —->co. 
But suppose, in addition, that r2V —» 0 as r —» 0. Then 
the Born series solution of (2) will exist and will 
converge for small enough values of the coupling 
constant g. However, if gV-^gr~P as r—»0, /3>2, 
g>0f then the ^th interation of (2) will behave near 
the origin like 

<p(n) _ > gnfel+lrl+l-n(&-2) 

so that the iteration integrals diverge for order n larger 
than (2H-l)/(0—2). The Born series does not exist 
for any value of g other than zero. This naturally 
suggests that there is a branch point at g = 0 and we 
seek a procedure for obtaining an asymptotic expansion 
of the solution in the limit of small g. Let us see how we 
can set up a heuristic method for obtaining the leading 
term in the asymptotic expansion by use of a cutoff. 
We replace the actual potential V by a cutoff potential, 
e.sf. 

V.(r) = 6(r-e)V(r). 

The Born series corresponding to this potential exists 
for small enough g and we can compute the phase 
shift as a power-series expansion in g. Since we are 
later going to take the limit e —> 0, we may expect that 
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the leading term in the asymptotic expansion for small 
g can be obtained by retaining, for every order of g, 
only the leading terms for e —» 0. 

For example, in the case of .S-wave scattering by the 
potential 

gV=gr*+gV', 
r-*0 

this procedure leads to the result 

tanSe= -£[>Hg2e-3+!g3e-6+ • • • ] ; (4) 

and it is easily shown that this series converges to 

tan5e=-^(g)1/2tanh(g1/2A). (5) 

For finite e this expression is analytic in the coupling 
constant g. Passing now to the limit e —» 0, we find 

tan$=-£(g)1/2, (6) 

i.e., there is now a branch point at the origin of the g 
plane. The cutoff procedure for obtaining the leading 
term in an asymptotic expansion for small g evidently 
works, in the sense that it gives a finite result. We shall 
see later on that the result is in fact the correct one. 

In the above example, we could explicitly sum the 
power series in g for finite cutoff e. Even where this 
cannot be done in closed form a power counting 
analysis permits one to infer the nature of the leading 
term in the asymptotic expansion for small g. Thus, if 
we find for finite e the series of leading terms 

00 

tanS€ = & £ ang
ne~nh+l, 

n=0 

we can rewrite this as 

t^de = kg^b\:(ge-b)-^^an(ge~b)^. (7) 
n 

If we now suppose that the bracketed expression exists 
in the limit e—>0 we infer that tan§—> constXkg1/b, 
as g —> 0. 

In the example worked out above in connection with 
the result (5), all Born terms in the expansion for tan5 
were divergent in the limit e —-> 0. In the general case, 
with V —> r~P as r —» 0, the cutoff procedure gives the 
following results: If (21+1)/(ft—2) is not an integer 
and if n is the greatest integer less than (21+1)/(fi— 2), 
we have the form 

tanS= E am(k)gm+ak2l+Y2l+1)KP~2) 

+higher order in g. (8) 

If (21+1)/(fi—2) = n is an integer we have 

tanS= £ am(k)gm+ak2l+xgn\ng 

+higher order in g. (9) 

In both cases the coefficient a is independent of k and g. 
It should be noted that in a formulation of the 

scattering problem in momentum space, certain quanti­
ties—as, for example, the matrix elements (k',l\ V\k,l) 
of the potential operator—may not exist. In particular, 
if l<i(l3—3) the Lippman-Schwinger integral equation 
for the T matrix cannot be formulated without a cutoff. 
A similar situation arises in nonrenormalizeable field-
theoretic models. Thus, the kernel of a Bethe-Salpeter-
type equation may be so singular on the light cone that 
its Fourier transform does not exist.3 Nevertheless. 
the cutoff technique can in principle always be intro­
duced. In the following we shall investigate the validity 
of this cutoff procedure for the problem of scattering 
by singular repulsive potentials of a certain class. 

III. THE ASYMPTOTIC EXPANSION 

We consider repulsive potentials of the form (g=a2) 

gV(r) = a2r-2~2/% 0<*><oo. (10) 

With X=/+J the radial equation is 

d2<p r \ 2 - i 

dr2 
-+\k2 _a1r-2-2lv <P = 0. (11) 

In the limit of zero energy (k = 0) this can be reduced 
to the Bessel equation, whose regular solution is4 

<Po=aXvrmKxp(var-1/v). (12) 

In order to obtain a convergent expression for the 
regular solution of (10) when &^0, we set 

<p(r)=<po(r)Z(r) 

so that Z(r) satisfies the equation 

dr dZ-\ dr dZ~\ 
-\ <Po2— 
drL dr J 

+k2<p0
2Z=0. 

Imposing the boundary condition Z(r) —» 1 as r—* 0, 
we obtain the Vol terra equation 

Z(r) = 1+k2 / W(r/)Z(r')dr', (13) 

where 

W(r/ H: Z<P*2(r')/<PoKt)Jdt. 

From the asymptotic behavior of the K function we 
see that 

r->0 

and it is then as easy matter to show that there exists a 
3 R. F. Sawyer (to be published). 
4 In terms of the Bessel functions Jp(x) we have 

kp (x) = 7T (2 sin^Tr)-1 { e^'V-p (ix) - e^^Up (ix)}. 

The factor c^v has been included to ensure a finite limit for a —> 0. 
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positive number B, independent of r, rr, X, and g, 
such that 

\W(r/)\<Br' 
for 

| a i g g | ^ i r . (14) 

Thus, the iteration solution of (13) converges uniformly 
in X and g in the cut plane defined by (14). From the 
fact that Kp(x) is an even entire function of p and 
analytic in the x plane cut along the negative real axis, 
it follows that Z(r), hence <p(r), is analytic in the g 
plane cut along the negative real axis and that it is an 
entire function of X2 considered as a complex variable. 
Since the Jost solution of (11) can be shown by standard 
methods to be entire in g and X2, we conclude that the 
scattering amplitude is meromorphic in the cut g plane 
and meromorphic in X2 (apart from a factor eilA in the 
^-matrix element). This generalizes the results an­
nounced by Regge and Predazzi5 for a special example 
of a singular potential. 

Now tan5 has a branch point at g=0 and we are 
interested in finding the leading term in an asymptotic 
expansion for small g. For this purpose, define 

i>(r) = r*+*z(r), 
so that 

d% 

dr2 -+ k2 L = . 2 — K - ) . (15) 
L r2 J L r <p0J & V + V 

Since the iteration solution of (13) can be differentiated 
termwise to yield a uniformly convergent series for 
dZ/dr we may write 

dh 

dr2 

r x2- |n r W 2X+l-i 
+ k2 k=A2 2 

L r2 A L <pQ r A 

> / ' 
Jo 

rX+i 

Xvo'Kr) / <Po2(r')r'-«+ih(r')dr', 

=B(a,r). (16) 

The regular solution satisfies the integral equation 

1 

J r 

v(r)=sx+i(kr)—SM-iikr) / c^+i(kr')B(a,r')dr' 

l r 
—cM(kr) / Si+h(kr')B(a/)dr'. 

k Vfl 

We now distinguish three cases: 
(i) If \v> 1 we have 

(17) 

<P0 

<Po 

2X+1 

\v-l 
- 1 - 2 / J / 

+ t e r m s of higher order in a. 

6 E. Predazzi and T. Regge, Nuovo Cimento 24, 518 (1962). 

I t can readily be verified that the integrations in (17) 
converge if B(a/) is replaced by a2 lima^oor2B(a/). 
Thus, the first iteration of (17) is proportional to a2 

and the remainder is of higher order in a. As expected, 
therefore, the leading term of <p in an asymptotic 
expansion for small g is just given by the first Born 
iteration, which in this case is covergent. For tan5 the 
leading term for small g is thus proportional to g, being 
given by the first Born approximation. 

(ii) For \v< 1 we have 

<Po' 2X+1 /p\2*»T(l-\v) 2 
<Po r 

- = 4 X 
2 / r( i+Xi/) 

+ te rms of higher order in a, 

Again the first iteration of (17) gives the leading term in 
the asymptotic expansion for small g. Correspondingly, 
the leading term for tan5\ is given by 

7rX 
tan§x 

T ( l - X y ) 1 
a2^k2X. (18) 

*-° 22X\2/ r(i+x*/) r2(i+x) 

In particular, for the case X=J, v=l, which corre­
sponds to the example worked out by the cutoff 
procedure in Sec. I I , we recover the result obtained 
there, namely tan5= — ak. 

(iii) For X^= 1 we have 

W 2X+1 
2 = _ (va2 \na)r~l-2X 

<Po r 
+te rms of higher order in a. 

Again the leading term is obtained by the first iteration 
of (17) and this leads to a result for tand which is 
proportional to a2 lnce: 

tanSx -> 2-2-2X(7r^2X/Xr2(l+X))a:2ln«. 
0->O 

(19) 

As discussed in Sec. II , the same result is obtained by 
the cutoff technique, the present case corresponding to 
a situation in which the first Born term in the iteration 
of (2) diverges logarithmically. 

IV. DISCUSSION 

I t is not difficult to understand the reasons for the 
success of the cutoff prescription for the determination 
of the leading term of tand as g —± 0. In the case of the 
simple power-law potentials gV(r) = gr~2~2h which we 
have been considering, the cutoff procedure, insofar as 
it retains only the most singular terms in e~1 for every 
order, in effect amounts to a replacement of the integral 
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equation (2) by the equation6 

( - ) 
\ 2 / 

_ - V + * / r^+^~2-^<p€(k/)d(rf-e)drf 

2X Jr 

^-X+W / X + * - 2 - 2 / V e ( £ / ) J / # (20) 

2X Je 

The solution, apart from a ^-dependent normaliza­
tion, is just the regular solution of (1) for k=0 and 
V=gr-2~2/v6(r— e). For dimensional reasons, the corre­
sponding expression for tan§\,6 obtained from Eq. (3) 
is necessarily of the form 

where f(x) is analytic at x=0. Therefore, if the limit 

lim(e&)2V(g<r2/') (21) 
e—>0 

exists, it must coincide with 

lim tan5x,, 
c-*0 

g ir112 / & \ x + * r00 

kT(\+l) 07 r^-2-2^o(k,r)dr, (22) 

where (fa(k}r) is the properly normalized zero-energy 
solution of (1). [The normalization is determined by 
the first term on the right-hand side of (20).] 

But the expression (22) is nothing other than the 
leading term (for g —» 0) of (3), which we rewrite here 

tan5\= 
g F 

Jo 

sx+h(kr)r-2~2lv<p(ks)dr. 

Indeed, in this integral the contribution from the range 
outside any neighborhood of the origin is proportional 
to g=a2. Being interested in the leading term, which 
vanishes more slowly than this as g—*0, we may 
replace s\+${kr) and <p(k,r) by their asymptotic forms 
for r —>0. But from (13) we have seen that <p(k,r) 
—» (po(k,r) as r—>0, where <po is the zero-energy solu­
tion. It can be directly verified that the expressions for 
tan5x which one obtains from (22) on use of the true 
zero-energy solution agree with the results obtained in 
the preceding section. 

It should be remarked that this argument does not 
depend on the form of cutoff function which is employed, 
provided that for positive values of the cutoff parameter 

6 For simplicity, we consider only the case \v<l, where already 
the first Born term is divergent for e —* 0. 

e the potential is regular enough to ensure the existence 
of the Born series for small enough g and provided that 
the limit (21) exists. 

In summary, we can argue apart from the considera­
tions of Sec. I l l that the leading term in the asymptotic 
expansion of tan5\ is given by the approximation (22) 
[recall that we are now discussing for simplicity the 
most serious case, where the first Born iteration of (2) 
is already divergent]. In (22), <po{kyr) is the zero-energy 
solution of the Schrodinger equation, properly normal­
ized. We have argued that it must be correctly given by 
the cutoff procedure, at least for the class of potentials 
under discussion. The direct results of Sec. I l l confirm 
this and also confirm that no delicacy has been over­
looked in these plausibility remarks, i.e., they confirm 
that the limit (21) indeed exists. That the limit (21) is 
not analytic in g should not be surprising, since the 
limiting process e —» 0 is not uniform with respect to g. 
A simple illustration of this phenomenon has already 
been provided by the example of Sec. II, where for 
V=gr~4, Z=0, we foundtan5= —lim^0(g)1/2 tan^(g1/2/e) 
= -(g)mk. 

In our discussion so far, we have considered simple 
potentials of the form gV= gr~2~2lv. For the more general 
case, 

where r2+2/vVi —> 0 as r —> 0 and where Vi is independ­
ent of gy we would expect that the weak-coupling limit 
for tan5 is unaffected by the presence of the less singular 
addition Vi. It would certainly be ignored in the cutoff 
procedure. This expectation would in fact be justified if 
one could show that the integral in (22) in fact converges 
(it is only convergence at the lower limit that would be 
in question). In (22) <po is the zero-energy solution of 
the full Schrodinger equation. Since the integral in fact 
converges when F i=0 there can be little doubt that it 
exists when Vi is present. That convergence is enough, 
we can argue dimensionally. Consider, for example, 
the case 

V(r) = gr-2~2/v(l+yr0, \v<l, p>0 , 

where 7 is a fixed parameter independent of g. For 
dimensional reasons, the existence of (22) implies that 

tan5 -> (kg'^figyVo) -> (*r / a)x+l/(0), 
0-+Q 

independent of 7. As to the convergence of (22), this 
can be inferred in every particular case from the 
asymptotic form of <po for small r. For example, if v— 1 
and p = i we find 

0 Q __» e-ff1 /2(r- l+ar-l /2)yH-|(0)l /272^l- | -O(r1 / 2)] 

and (22) indeed converges. 


